Pure ZnO and composite ZnO/TiO2 catalyst plates: a comparative study for the degradation of azo dye, pesticide and antibiotic in aqueous solutions.

نویسندگان

  • Eylem Topkaya
  • Mehmet Konyar
  • H Cengiz Yatmaz
  • Koray Öztürk
چکیده

Photocatalytic degradations of azo dye (RR 180), pesticide (2,4-D) and antibiotic (enrofloxacin) in aqueous solutions were performed and compared by using pure ZnO and ZnO/TiO2 composite (at 1:1 ZnO to TiO2 mole ratio) catalysts in a self-supporting plate form. The plates were produced by tape casting of the constituent powder slurries and sintering at 600°C. Photocatalytic degradations of these pollutants were carried out under UVA and UVC irradiations for 120 min. Maximum degradation was obtained for 2,4-D solution using pure ZnO plates under UVC. Due to the photolysis effect, UVC wavelength yielded higher efficiency values for all the chemicals than UVA. The discrepancy in the photocatalytic performances of the pure ZnO and the ZnO/TiO2 composite plates were not found to be significant. The plates were found to be effective for the consecutive degradation tests which indicated their potentiality in extended applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Study Degradation of 4-(2-Pyridylazo)Resorcinol Dye in Circulating Fludized Bed Photo Reactor Using ZnO Nanoparticles

Background & Aims of the Study: In this study, 4-(2-pyridylazo) resorcinol (PAR) as model azo dye was used. In spectroscopic measurements and studies of PAR reagent as a ligand are used to formation a complex with toxic metals. So, removal and degradation these compounds of wastewaters are necessary. The aim of this study is the degradation of PAR from aqueous solutions in circulating fludized ...

متن کامل

Photocatalytic degradation of an azo textile dye with manganese-doped ZnO nanoparticles coated on glass

Mn doped ZnO nanocomposite thin film coated on glass by a simple spin-coating method was used to degrade an azo textile dye from aqueous environment. Mn doped ZnO nanocomposite thin film was characterized by means of X-ray diffraction (XRD) and scanning electron microscopy (SEM). The photo-reduction activity of photocatalyst was evaluated using an azo textile dye as organic contaminant irradiat...

متن کامل

Photocatalytic degradation of an azo textile dye with manganese-doped ZnO nanoparticles coated on glass

Mn doped ZnO nanocomposite thin film coated on glass by a simple spin-coating method was used to degrade an azo textile dye from aqueous environment. Mn doped ZnO nanocomposite thin film was characterized by means of X-ray diffraction (XRD) and scanning electron microscopy (SEM). The photo-reduction activity of photocatalyst was evaluated using an azo textile dye as organic contaminant irradiat...

متن کامل

Photocatalytic degradation of methyl orange using ZnO and Fe doped ZnO: A comparative study

ZnO and 2% Fe doped ZnO photocatalytic nanomaterials were successfully synthesized by successive ionic layer adsorption and the reaction (SILAR) method. The characterizations of these nanomaterials were carried out using XRD, SEM and EDX techniques. XRD study shows that the samples have a hexagonal wurtzite crystal structure, size of which is in the range 21-23 nm. SEM shows nanoflakes or nano ...

متن کامل

Photocatalytic Removal of Acid Blue 113 Dye from Aqueous Solutions Using Zinc Oxide-Kaolin Nanocomposite under Visible Light Irradiation

Background and purpose: Textile industries produce huge amounts of colored wastewater. Synthetic dyes cause serious problems to human health and aquatic organisms due to their toxic and carcinogenic properties. In this study, Acid Blue 113 (AB113), which is stable and persistent against conventional treatment methods was selected as the target contaminant. Materials and methods: The synthesis ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of colloid and interface science

دوره 430  شماره 

صفحات  -

تاریخ انتشار 2014